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Pasting on Deformable Surfaces with Visible Ink
Using Dense SIFT Flow

Andrew Liu

Abstract—Pasting onto a deformable surfaces requires either a
non-parametric warp or a high d.o.f global warp approximation.
Previous works utilized techniques such as moving least squares
or hierarchical big data to define a non-parametric mapping from
an image to a known template. In this paper, I use Dense SIFT
Flow to generate a dense pixel mapping which is used to warp
regions from a mesh template to an input image containing a
deformed mesh template. One of the latest works used infrared
ink and a 1000 FPS camera to capture and isolate videos. I
decided to recreate similar results using slower hardware and
colored mesh grid.

Index Terms—Deformable Surface, SIFT Flow, Image Warping

I. INTRODUCTION

In this paper, we explore pasting an image onto a de-
formable surface such as paper or clothing. Practical ap-
plications of this include augmented reality and detection
technology. In particular, we can take an image and deform it
such that it fits onto the surface, matching the deformation as
closely as possible. In theory, it’s possible to do the reverse
too - given an image and mesh grid on a deformed surface,
reconstruct the image as if projecting onto a flat surface.

Previous work on deformable surface include a high speed
1000 FPS camera and infrared ink. A high speed camera can
capture the changes in the mesh grid without worrying about
motion blurring. Infrared ink can be detected with high fidelity
using an infrared scanner. Although these equipments allow
for high quality results, there aren’t many high speed cameras
available for use. In order to mimic the real world setting, I
used an iPhone 5S as our capturing device. While iPhones can
detect some levels of infrared readings, I decided to use visible
light instead. This poses extra challenges such as determining
bounding boxes and isolating the mesh grid.

In order to solve this we break the problem into two distinct
parts:

1) Isolate and align the mesh-grid and transplant image.
2) Recover structural information about the surface using

a known mesh grid. Perform a warp from a flat surface
plane to the deformed surface.

Above describes my general approach for pasting onto a
deformed surface. In this paper I discuss a single pair of
solutions for each part which I found works well with the
given constraints.

A. Previous Work

There are many approaches to deformable surfaces that
I looked at. The original inspiration for this paper was a
video produced by Ishikawa Watanabe Laboratory which

Fig. 1. Mesh grid color pattern used

demonstrated high speed projection on deformable surface.
The algorithm they use to detect deformations wasn’t available
publicly (as of 12/8/2016).

Another work I looked at was Schaefer, McPhail, and
Warren’s Image Deformation Using Moving Least Squares.
I chose not to use their algorithm because I would need to
identify points of correspondences with high accuracy. With
deforming and repeating mesh grid patterns, there isn’t a
good way to define points of correspondences without making
assumptions about the structure and quality of the image.
Furthermore, with occlusion the algorithm might fail to find a
good set of correspondences that can warp the image well.

The last work I looked at was Tian and Narasimhan Hierar-
chical Data-driven Descent for Efficient Optimal Deformation
Estimation. While data-driven methods are efficient and po-
tentially provide the globally optimum solution, I don’t have
access to large data set nor the time to generate training pairs
for the deformations.

II. MESH DETECTION AND ALIGNMENT

Figure 1 is the pattern used to recover the deformed surface.
It consists of max-valued R and B channel background with a
truss structure of max G channel pixels. I chose to have green
represent the mesh grid because highly saturated greens are
rare in indoor environments where I was testing this.

I choose a red blue background in order to increase the
contrast with the mesh grid. This allowed me to be more
aggressive with the set of energy functions I could test since
the mesh grid is black in the red-blue spectrum while the
background is black in the green channel.

When taking a picture of the deformed pattern, any whites
in the image will also register as high green pixel value.
Therefore I decided to use an energy function which exponen-
tially penalizes pixels with high red and blue values. I created
threshold values to isolate and binarize the mesh grid.
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Fig. 2. Left: Pattern paper Right: Extracted mesh pattern

Next we need to align the template and the grid. Aligning
the grid and template makes finding the grid’s surface defor-
mation easier. In order to align, I computed the mean x and
y-value and align the grid and template. Finally I scale the
template until the percentiles of both meshes align too.

One shortcoming is that the alignment is not rotationally
invariant. I tried to introduce rotationally invariant feature
descriptor patches before trying the alignment, unfortunately
given the nature of deformable surfaces the gradient profile
might look very different for similar deformations.

Another issue I encountered was the reflective property of
the printer ink. Under certain deformations, certain regions
would reflect the sunlight into the camera, resulting in over-
exposed pixels. In addition, given the slower shutter speed of
an iPhone, the mesh grid may be blurred if the deformation
is too quick. This made recovering the mesh practically
impossible.

III. SIFT FLOW MAPPING

Given the binarized deformed mesh grid and the template,
we need to find a dense warp to map pixels from the template
to the deformed template. I decided to use Liu, Yuen, and
Torralba’s SIFT Flow paper to map pixels. In their paper, they
propose a minimization problem which penalizes flow-fields
depending on similarity and smoothness constraints before
using gradient descent to find a flow-field. The algorithm they
provide has few different parameters which tuned.

Since the deformation is smooth (in this case we use a piece
of paper which can’t fold onto itself), we use a high smooth-
ness parameter so that regions of pixels are preserved across
the mapping. One last constraint is the distance constraint
which penalizes flow-fields which have high magnitudes.
Because we have already done alignment of the template and
mesh grid, most of the pixel mappings should be close.

After we find the flow field, we warp our transplant image
and a binary mask into the deformable surface shape. Then
we combine the warped transplant image and the original grid
image based on our mask.

Noticeable about this process, we did not define any points
of correspondences. In the future, I will look at designing a
different pattern such that points of correspondences can be
identified and used. Given the repeated mesh structure of the
template, it’s impossible to distinguish between intersections
unless we assume relative distance and spacing. Unfortunately
relative spacing may not be preserved on a deformed surface.

IV. RESULTS

More extensive results and animations can be
seen online https://inst.eecs.berkeley.edu/ cs194-
26/fa16/upload/files/projFinalGrad/cs194-26-abr/).

Fig. 3. Workflow for the program. (a). is the original template grid binarized.
(b). is the deformed surface pattern (c). is the mask which is a bounding box
around the template mesh grid. (d). is the transplant image. (e). is the warped
mask. (f). is the transplant image warped. (g). the original deformed surface.
(h). the combined deformed surface and transplant image.

The mesh isolation technique sometimes fails to capture
enough information about the mesh structure. This is partly
due to the equipment restrictions I placed on the project. When
recording a moving paper, I found that deforming the paper too
quickly results in motion blur. Adding bad lighting, it becomes
even harder to differentiate the visible light spectrum. Both of
these are solved when using a high speed camera and infrared
ink.

Finally the SIFT Flow had some consistency and smooth-
ness issues in Figure 4. This bug is localized and doesn’t
disrupt the overall mapping that badly. The artifact is due to the
conflicting smoothness and consistency parameters required.
Make things too smooth and the far corners which are the most
deformed may not properly warp. Make things too consistent
and the interior of the image might render with visible seams.

Figure 5 shows that it’s possible to detect this mesh grid
from a distance and still properly paste onto it. I used my
laptop display as the mesh grid because without a light source,
illumination can be a bit tricky.

Although the cursory work looks to be promising, the run
time is still too high to be rendered live like in Ishikawa
Watanabe Laboratory’s Demo video. For a 37 frame video,
it took 5 minutes to render the deformations.

V. CONCLUSION

Although the algorithm is still highly unoptimized, the proof
of concept approach shows promising results. In terms of mesh
grids, infrared ink is the best way to go because visible light
is too dependent on lighting conditions.

For slowly deforming surfaces, having a slow shutter speed
is acceptable. However quick deformations result in blurred
motion on an iPhone which makes mesh recovery almost
impossible.

While the truss structure does a good job of modeling
the deformation surfaces, we could design a different pattern
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Fig. 4. Extreme deformation causes issues with SIFT Flow parametrization.

Fig. 5. Detecting mesh grid at distance.

which has the similar truss structure but also introduce distin-
guishable intersections for points of correspondences.

If we were able to accurately identify pairs of correspon-
dences, then there are other approaches we could try such
as the Moving Least Squares warp or gradient descent for
non-parametric warp. Since we can define a loss function as
the sum of pixel differences between the original grid and
template, we can potentially find a local parametric warp for

each region iteratively until we reach a local minimum.
In addition, with points of correspondences, we can in-

troduce rotationally invariant patch descriptors and take the
average angle to get the orientation of the entire page. Then
we correct it and perform the alignment from the previous
section.

Future steps:
1) Reverse template imaging. If we have an unknown image

painted onto an unknown deformed surface, we can use a
projector to project a visible mesh grid template onto the
surface, use the above algorithm to reverse the deformed
surface and recover the image.

2) Handle partial occlusions. Since we have a color back-
ground, we can extract the red-blue ratio instead and
create a mask where the occluded parts of the mesh
grid are black. This may have unknown consequences
for SIFTFlow.

3) Design a mesh grid so that points of correspondences
can be recovered. Used for rotationally invariance and
other warping algorithms.
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